Home / Publications Publications Publications *: equal contributions; †: alphabetical order Single-cell and Spatial Transcriptomics Data-driven Methods Liao, X. * , Kang, L.* , Peng, Y., Chai, X., ... & Liu, J. (2024). Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo. Nature Communications , 15, 10849. [Software ]Liu, W.* , Liao, X. * , Luo, Z., Yang, Y., Lau, M. C., Jiao, Y., ... & Liu, J. (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications , 14(1), 296. Song, X., Liao, X. , Ye, H., Xu, Y., Fan, W., Liu, J., & Yu, T. (2024). Single Cell Gene Expression Prediction via Prototype-based Proximal Neural Factorization. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (Accepted). Liu, W., Liao, X. , Yang, Y., Lin, H., Yeong, J., Zhou, X., ... & Liu, J. (2022). Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data. Nucleic Acids Research , 50(12), e72-e72. Liao, X. * , Chai, X* ., Shi, X., Chen, L. S., & Liu, J. (2020). The statistical practice of the GTEx Project: from single to multiple tissues. Quantitative Biology , 1-17.Deep Learning and Statistical Learning Methodologies Huang, J., Jiao, Y., Kang, L., Liao, X. † , Liu, J., & Liu, Y. (2024). Schrödinger-Föllmer sampler: sampling without ergodicity. IEEE Transactions on Information Theory . [Software ] Huang, J., Jiao, Y., Liao, X. † , Liu, J., & Yu, Z. (2024). Deep Dimension Reduction for Supervised Representation Learning. IEEE Transactions on Information Theory , 70(5), 3583–3598. [Software ] Kang, L., Liao, X. † , Liu, J., & Luo, Y. (2023). Deep Estimation for Q* with Minimax Bellman Error Minimization, Information Sciences , 648, 119565. Wang, Y., Liao, X. , & Lin, S. (2019). Rescaled Boosting in Classification. IEEE transactions on neural networks and learning systems , 30(9), 2598-2610. Zhu, J., Liao, X. , Li, C., Jiao, Y., Liu, J., & Lu, X. (2023). Invariant and Sufficient Supervised Representation Learning. The International Joint Conference on Neural Networks (IJCNN) , (pp. 1-8). IEEE.